制造业新宠,机器视觉技术突飞猛进
发布时间: 2019-04-09
浏览次数: 73

全球机器视觉发展至今,已有三十余年历史,我国机器视觉从90年代末发展以来,也已经有了十余年的发展经验。在这个过程中,图像处理、光学成像、传感器、处理器等技术的飞速崛起带动了机器视觉的蓬勃发展,各种新概念、新理论的不断涌现,也使得机器视觉技术与时俱进、日久弥新。

机器视觉长期以来用于工业自动化系统中,以通过取代传统上的人工检查来提高生产质量和产量。从拾取和放置、对象跟踪到计量、缺陷检测等应用,利用视觉数据可以通过提供简单的通过失败信息或闭环控制回路,来提高整个系统的性能。

机器视觉在生活中的的应用及其广泛,在交通领域、水文观测、地质灾害预警识别等领域,都发挥着重要的作用。而宏观上看,发展速度较快的细分产业是人脸识别与图像识别。这两个分支行业,在金融、安防以及交通领域较为集中。这些细分领域的投资者,大多都具有自身技术优势,并将为各类场景提供应用解决方案来盈利。

作为一项一项复杂的任务,机器视觉需要大量的处理能力。随着摩尔定律继续增加处理元件(如CPU、GPU和FPGA)的性能,设计人员可以使用这些组件来开发高度复杂的算法。设计人员还可以使用此技术来提高设计中其他组件的设计性能,特别是在运动控制和I/O领域。

随着所有这些子系统性能的提高,用于开发这些机器的传统分布式架构将面临压力。将这些任务整合到单个控制器中,运行在单个软件环境下,消除了设计过程中的瓶颈,使设计人员可以专注于创新,而不必担心实施问题。

深圳星上维智能科技有限公司是一家集机器视觉、工业智能化于一体的高新技术企业,是由一支中国深圳大学机器视觉技术研究的精英团队在深圳创立。

星上维智能科技拥有基于深度学习的三维视觉引导、机器人运动控制、视觉检测、三维建模等方面的核心技术,并研发了机器人三维视觉引导系统 、机器人三维视觉检测系统、产品外观检测系统等可根据客户需求定制化的智能产品。以高效·低成本·模块化的方式为自动化集成商、自动化设备厂商、机器人厂家提供机器视觉的相关解决方案。

星上维机器视觉还有以下几点特征:

1、效率:工业自动化的快速发展,使生产效率大幅提升,从而对检测效率提出了更高的要求。人工检测效率是在一个固定区间,无法大幅提升,而在流水线重复且机械化的检测过程中,检测人员很容易出现疲劳而导致检测效率降低;而机器视觉能够更快的检测产品,特别是在生产线检测高速运动的物体时,机器能够提高检测效率,速度甚至能够达到人工10-20倍;

2、精度:由于人眼有物理条件的限制,即便是依靠放大镜或显微镜来检测产品,也会受到主观性方面的影响,精度无法得到保证,而且不同的检测人员的标准也会存在有差异;在精确性上机器有明显的优点,它的精度能够达到千分之一英寸。而且机器不受主观控制,只要参数设置没有差异,相同配置的多台机器均能保持相同精度

3、客观性:人工检测难免出现疲劳,同时有一个致命的缺陷,就是情绪带来的主观性,检测结果会随检测人员心情的好坏产生变化;而机器没有喜怒哀乐,它所带来的检测的结果自然更加客观可靠。

4、重复性:机器可以以相同的方法一次一次的完成检测工作而不会感到疲倦;与此相反,人工长期重复性检测肯定会产生疲劳,同时每次检测产品时都会有细微的不同,即使产品时完全相同的。

5、环境:机器视觉是通过即图像摄取装置将目标转换成图像信号,传送给专用的图像处理系统,在测量工件过程中,无需与工件进行接触,因此能够适应恶劣危险生产环境,同时也不会对工件造成接触性损伤;而人工则需要与工件进行接触性检测,因为无法应对恶劣危险环境,且在检测过程中,不可避免的会对工件造成接触性损伤;

6、成本:机器视觉前期投入会比较多,但属于一次性投入,长期产出,由于机器视觉的发展越来越迅速,价格也会逐渐降低;而人工检测则需要长期投入,且人工和管理成本会呈不断上升的趋势。由于机器比人工的检测效率高很多,因此就长期来看,机器视觉的成本会更低;

7、信息集成:机器视觉可以通过多工位测量方式,一次性完成待检产品的轮廓、尺寸、外观缺陷、产品高度等多技术参数的测量;而人工检测在面对不同的检测内容时,只能通过多工位合作协调完成,而不同员工检测标准不一,极容易出现误检的情况;

8、数字化:机器视觉工作过程中产生的所有测量数据,均可独立拷贝或以网络连接方式拷出,便于生产过程统计和分析。同时还可在测量后导出指定测量数据并生成报表,无需人工一一添加,这无疑大大优于人工检测的数据统计;

随着国内制造业的快速发展,对于产品检测和质最的要求不断提高,各行各业对图像和机器视觉技术的工业自动需求将越来越大,因此机器视觉在未来制造业中将会有很大的发展空间